Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Neonatal Screen ; 9(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36648770

RESUMEN

Untreated vitamin B12 (B12) deficiency may cause delayed development in infants. Several newborn screening (NBS) programs have reported an increased detection rate of B12 deficiency when second-tier dried blood spot (DBS) analyses of total homocysteine (tHcy) and methylmalonic acid (MMA) are included. This is a retrospective study of newborns reported from NBS during 2012−2021 with confirmed B12 deficiency. DBSs were retrieved from the NBS biobank for second-tier MMA and tHcy analysis. Thirty-one newborns were diagnosed with B12 deficiency out of 552970 screened. Twenty-five were ascertained from sixty-one false positive (FP) cases of methylmalonic acidemia and propionic acidemia (PA), and six infants screened positive for other NBS metabolic diseases with propionylcarnitine (C3) in the normal range. In the original DBS, 7/23 (30%) and 12/23 (52%) of B12-deficient newborns with FP methylmalonic acidemia/PA had MMA and tHcy > 99th percentile. B12 deficiency was a common differential diagnosis of screening positive for methylmalonic and PA. C3 failed to identify a subset of newborns with B12 deficiency. Second-tier MMA and tHcy analyses in the DBS showed suboptimal sensitivity for identifying infants with B12 deficiency. The shortcomings of NBS should be acknowledged when considering B12 deficiency as a primary target of NBS panels.

2.
Genome Med ; 13(1): 90, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020708

RESUMEN

BACKGROUND: We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder. METHODS: Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays. RESULTS: We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype. CONCLUSIONS: Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , ARN Helicasas/genética , Animales , Biomarcadores , Expresión Génica , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética/métodos , Mutación de Línea Germinal , Células HEK293 , Humanos , Inmunohistoquímica , Mutación , Fenotipo , ARN Helicasas/química , ARN Helicasas/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...